top of page

The development of lithium-sulfur batteries (LSBs) marks a crucial milestone in advancing energy storage solutions essential for sustainable energy transitions. With high theoretical specific capacity, cost-effectiveness, and reduced ecological footprint, LSBs promise to enhance electric vehicle ranges, extend portable electronics' operational times, and stabilize grids integrated with renewable energy. However, challenges like complex processing, electrode instability, and poor cycling stability hinder their commercialization. This study introduces a novel battery design that addresses these issues by coating sulfur directly onto the separator instead of the current collector, demonstrating that active sulfur can be effectively utilized without being incorporated into the electrode structure. Using an interwoven substrate made from carbon nanotube (CNT) fabric adorned with reduced graphene oxide (rGO), this setup enhances manufacturing scalability, supports optimal sulfur utilization, and improves battery performance. The rGO decoration provides multiple highly conductive polysulfide trapping sites, enhancing active material reutilization, while the flexibility and mechanical strength of CNT fabric contribute to electrode integrity. This combination boosts electrical conductivity and polysulfide-capturing capability, effectively managing migrating sulfur species during charge-discharge cycles and mitigating sulfur loss and polysulfide shuttling. The results demonstrate superior cycling stability and efficiency, highlighting the potential of this approach in advancing LSB technology.

This year’s Mid-Autumn Festival was truly special for our lab as we gathered for a fun-filled BBQ party, celebrating not only the holiday but also reconnecting with some familiar faces! We were overjoyed to welcome back our alumni, Derek, Lucas, and Vincent, who joined us for the evening. Their return made this gathering even more memorable, as we shared stories of the past, reflected on the growth of our team, and enjoyed great food under the moon.


The BBQ party was filled with laughter, warmth, and the spirit of reunion, reminding us that the bonds formed here go beyond just work—they’re lifelong connections. Thank you to everyone for making it such a special night for BEST Lab!

Advancing battery electrode performance is essential for high-power applications. Traditional fabrication methods for porous electrodes, while effective, often face challenges of complexity, cost, and environmental impact. Inspired by acupuncture, here we introduce aneco-friendly and cost-effective microneedle process for fabricating lithium iron phosphate electrodes. This technique employs commercial cosmetic microneedle molds to create low-curvature holes on electrode surfaces, significantly enhancing electrolyte infiltration and ion transport kinetics. The punctured electrodes were prepared and characterized, with comparisons to pristine electrodes conducted using scanning electron microscopy, 3D metallurgical microscopy, and detailed electrochemical evaluations. Our results show that the microneedle-processed electrodes exhibit superior rate performance and diffusion properties. Simulations and experimental data reveal that the low-curvature holes reduce Li-ion concentration polarization and improve Li-ion transport within the electrode. This enhancement leads to higher specific capacities and better rate capabilities in the punctured electrodes. The findings highlight the potential of this innovative microneedle technique for large-scale production of high-performance electrodes, offering a promising avenue for the development of high-power-density batteries.


Featured Posts
Recent Posts
bottom of page